Geohydromodellierung

Prof. Dr. Sebastian Bauer

Arbeitsgruppenleiter

Ludewig-Meyn-Straße 10, R.315
Telefon: +49 431 880-2853
Telefax: +49 431 880-7606
sebastian.bauer@gpi.uni-kiel.de

Arbeitsfelder

  • Unterirdische Energiespeicherung und -gewinnung
  • Sanierung und Bewertung von kontaminiertem Grundwasser
  • Modellentwicklung für thermisch-hydraulisch-geomechanisch-geochemisch gekoppelte Modelle
  • Numerische Simulation gekoppelter nicht-isothermer Strömungs-und Transportvorgänge
  • Modellanwendung zur Identifizierung von Parametern und der Prozessprognose von der Labor- bis zur Feldskala

Curriculum vitae

  • seit 2007
    Professor am Institut für Geowissenschaften und Leitung der Arbeitsgruppe Geohydromodellierung an der Christian Albrechts Universität zu Kiel
  • 2002 - 2007
    PostDoc, Universität Tübingen; Erkundung kontaminierter Standorte und numerische Simulation von Abbauprozessen
  • 2006
    Habilitation, Eberhard Karls Universität Tübingen.
    Habilitationsschrift: "Process based numerical modelling as a tool for aquifer characterisation and groundwater quality evaluation"          
  • 1998 - 2002
    Doktorand, Eberhard Karls Universität Tübingen; Numerische Simulation der Genese von Karbonatkarst
  • 2002
    Promotion, Universität Tübingen.
    Dissertation: "Simulation of karst genesis in carbonate rocks"
  • 1997
    Diplom-Physiker, Universität Heidelberg

Publikationen

 

Artikel in Fachzeitschriften

Pfeiffer, W. T., Beyer, C., & Bauer, S. (2017). Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience, doi:10.1144/petgeo2016-050. Verfügbar unter: http://pg.lyellcollection.org/content/early/2017/03/07/petgeo2016-050
Beyer, C., Popp, S., & Bauer, S. (2016). Simulation of temperature effects on groundwater flow, contaminant dissolution, transport and biodegradation due to shallow geothermal use. Environmental Earth Sciences, 75(18), 1244 doi:10.1007/s12665-016-5976-8. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-5976-8
Boockmeyer, A., & Bauer, S. (2016). Efficient simulation of multiple borehole heat exchanger storage sites. Environmental Earth Sciences, 75(12), 1–13 doi:10.1007/s12665-016-5773-4. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-5773-4
Delfs, J.-O., Nordbeck, J., & Bauer, S. (2016). Upward brine migration resulting from pressure increases in a layered subsurface system. Environmental Earth Sciences, 75(22), 1441 doi:10.1007/s12665-016-6245-6. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-6245-6
Kabuth, A., Dahmke, A., Beyer, C., Bilke, L., Dethlefsen, F., Dietrich, P., … Bauer, S. (2017). Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environmental Earth Sciences, 76(1), 23 doi:10.1007/s12665-016-6319-5. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-6319-5
Pfeiffer, W. T., al Hagrey, S. A., Köhn, D., Rabbel, W., & Bauer, S. (2016). Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences, 75(16), 1177 doi:10.1007/s12665-016-5958-x. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-5958-x
Pfeiffer, W. T., Graupner, B., & Bauer, S. (2016). The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage. Environmental Earth Sciences, 75(20), 1347 doi:10.1007/s12665-016-6168-2. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-6168-2
Popp, S., Beyer, C., Dahmke, A., Koproch, N., Köber, R., & Bauer, S. (2016). Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification. Environmental Earth Sciences, 75(11), 1–13 doi:10.1007/s12665-016-5743-x. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-5743-x
Schulte, D. O., Welsch, B., Boockmeyer, A., Rühaak, W., Bär, K., Bauer, S., & Sass, I. (2016). Modeling insulated borehole heat exchangers. Environmental Earth Sciences, 75(10), 1–12 doi:10.1007/s12665-016-5638-x. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-5638-x
Wang, B., & Bauer, S. (2016). Converting heterogeneous complex geological models to consistent finite element models: methods, development, and application to deep geothermal reservoir operation. Environmental Earth Sciences, 75(20), 1349 doi:10.1007/s12665-016-6138-8. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-016-6138-8
Bauer, S., Pfeiffer, T., Boockmeyer, A., Dahmke, A., & Beyer, C. (2015). Quantifying Induced Effects of Subsurface Renewable Energy Storage. Energy Procedia, 76, 633–641 doi:10.1016/j.egypro.2015.07.885. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1876610215016616
Pfeiffer, W. T., & Bauer, S. (2015). Subsurface Porous Media Hydrogen Storage – Scenario Development and Simulation. Energy Procedia, 76, 565–572 doi:10.1016/j.egypro.2015.07.872. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1876610215016483
Popp, S., Beyer, C., Dahmke, A., & Bauer, S. (2015). Model Development and Numerical Simulation of a Seasonal Heat Storage in a Contaminated Shallow Aquifer. Energy Procedia, 76, 361–370 doi:10.1016/j.egypro.2015.07.842. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1876610215016185
Popp, S., Beyer, C., Köber, R., Koproch, N., Dahmke, A., & Bauer, S. (2015). Untersuchung der Auswirkungen von unterirdischen, saisonal betriebenen Wärmespeichern auf das Verhalten einer TCE-Grundwasserkontamination durch numerische Szenariensimulatione. bbr Leitungsbau Brunnenbau Geothermie, 3, 54–61. Verfügbar unter: http://www.bbr-online.de/archiv/03-l-2015/
Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2014). Evaluation of the Role of Heterogeneities on Transverse Mixing in Bench-Scale Tank Experiments by Numerical Modeling. Groundwater, 52(3), 368–377 doi:10.1111/gwat.12066. Verfügbar unter: http://onlinelibrary.wiley.com/doi/10.1111/gwat.12066/abstract
Ballarini, E., Beyer, C., Bauer, R. D., Griebler, C., & Bauer, S. (2014). Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation, 25(3), 351–371 doi:10.1007/s10532-013-9665-y. Verfügbar unter: http://link.springer.com/10.1007/s10532-013-9665-y
Benisch, K., Köhn, D., al Hagrey, S. A., Rabbel, W., & Bauer, S. (2014). A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environmental Earth Sciences, 73(7), 3077–3094 doi:10.1007/s12665-014-3603-0. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-014-3603-0
Boockmeyer, A., & Bauer, S. (2014). High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Géotechnique Letters, 4(April-June), 151–156 doi:10.1680/geolett.13.00060. Verfügbar unter: http://www.icevirtuallibrary.com/content/article/10.1680/geolett.13.00060
Li, D., Bauer, S., Benisch, K., Graupner, B., & Beyer, C. (2014). OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotechnica, 9(1), 67–79 doi:10.1007/s11440-013-0234-7. Verfügbar unter: http://link.springer.com/article/10.1007/s11440-013-0234-7
Bauer, S., Beyer, C., Dethlefsen, F., Dietrich, P., Duttmann, R., Ebert, M., … Dahmke, A. (2013). Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 70(8), 3935–3943 doi:10.1007/s12665-013-2883-0. Verfügbar unter: http://link.springer.com/10.1007/s12665-013-2883-0
Benisch, K., & Bauer, S. (2013). Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. International Journal of Greenhouse Gas Control, 19, 220–233 doi:10.1016/j.ijggc.2013.09.002. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1750583613003344
Benisch, K., Graupner, B., & Bauer, S. (2013). The Coupled OpenGeoSys-eclipse Simulator for Simulation of CO2 Storage – code Comparison for Fluid Flow and Geomechanical Processes. Energy Procedia, 37, 3663–3671 doi:10.1016/j.egypro.2013.06.260. Verfügbar unter: http://linkinghub.elsevier.com/retrieve/pii/S1876610213005031
Jesußek, A., Dahmke, A., Boockmeyer, A., Bauer, S., Berlin, C., & Ewer, W. (2013). Naturwissenschaftliche Folgen der thermischen Grundwassernutzung — Implikationen für die Genehmigungspraxis. Leitungsbau, Brunnenbau, Geothermie, Geothermie Sonderheft 2013, 54–63. Verfügbar unter: http://www.bbr-online.de/archiv/geoth-2013/
Li, D., Beyer, C., & Bauer, S. (2013). CO2-brine-mineral Interfacial Reactions Coupled with Fluid Phase Flow. Energy Procedia, 37, 3816–3824 doi:10.1016/j.egypro.2013.06.278. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1876610213005213
Mitiku, A. B., & Bauer, S. (2013). Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environmental Earth Sciences, 70(8), 3661–3673 doi:10.1007/s12665-013-2580-z. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-013-2580-z
Mitiku, A. B., Li, D., Bauer, S., & Beyer, C. (2013). Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Applied Geochemistry, 36, 168–186 doi:10.1016/j.apgeochem.2013.06.008. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S088329271300156X
Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2012a). Evaluation of transverse dispersion effects in tank experiments by numerical modeling: Parameter estimation, sensitivity analysis and revision of experimental design. Journal of Contaminant Hydrology, 134135, 22–36 doi:10.1016/j.jconhyd.2012.04.001. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0169772212000526
Bauer, S., Class, H., Ebert, M., Feeser, V., Götze, H., Holzheid, A., … Dahmke, A. (2012). Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environmental Earth Sciences, 67(2), 351–367 doi:10.1007/s12665-012-1707-y. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-012-1707-y
Beyer, C., Li, D., Lucia, M. D., Kühn, M., & Bauer, S. (2012). Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environmental Earth Sciences, 67(2), 573–588 doi:10.1007/s12665-012-1684-1. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-012-1684-1
Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U.-J., … Watanabe, N. (2012). A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences, 67(2), 613–632 doi:10.1007/s12665-012-1656-5. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-012-1656-5
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., … Zehner, B. (2012). OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589–599 doi:10.1007/s12665-012-1546-x. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-012-1546-x
Lucia, M. D., Bauer, S., Beyer, C., Kühn, M., Nowak, T., Pudlo, D., … Stadler, S. (2012). Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environmental Earth Sciences, 67(2), 563–572 doi:10.1007/s12665-012-1725-9. Verfügbar unter: http://link.springer.com/article/10.1007/s12665-012-1725-9
Li, D., Graupner, B. J., & Bauer, S. (2011). A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia, 4, 3817–3824 doi:10.1016/j.egypro.2011.02.317. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S1876610211005960
Bauer, R. D., Rolle, M., Bauer, S., Eberhardt, C., Grathwohl, P., Kolditz, O., … Griebler, C. (2009). Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. Journal of Contaminant Hydrology, 105(1–2), 56–68 doi:10.1016/j.jconhyd.2008.11.004. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0169772208001976
Beyer, C., Konrad, W., Rügner, H., Bauer, S., Liedl, R., & Grathwohl, P. (2009). Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Management, 29(2), 839–850 doi:10.1016/j.wasman.2008.06.025. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0956053X08002067
Rein, A., Bauer, S., Dietrich, P., & Beyer, C. (2009). Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. Journal of Contaminant Hydrology, 108(3–4), 118–133 doi:10.1016/j.jconhyd.2009.06.005. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0169772209000898
Park, C.-H., Beyer, C., Bauer, S., & Kolditz, O. (2008a). A study of preferential flow in heterogeneous media using random walk particle tracking. Geosciences Journal, 12(3), 285–297 doi:10.1007/s12303-008-0029-2. Verfügbar unter: http://link.springer.com/article/10.1007/s12303-008-0029-2
Park, C.-H., Beyer, C., Bauer, S., & Kolditz, O. (2008b). Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environmental Geology, 55(8), 1755–1766 doi:10.1007/s00254-007-1126-7. Verfügbar unter: http://link.springer.com/article/10.1007/s00254-007-1126-7
Bauer, S., Beyer, C., & Kolditz, O. (2007). Einfluss von Heterogenität und Messfehler auf die Bestimmung von Abbauraten erster Ordnung – eine Virtueller-Aquifer-Szenarioanalyse. Grundwasser, 12(1), 3–14 doi:10.1007/s00767-007-0019-8. Verfügbar unter: http://link.springer.com/article/10.1007/s00767-007-0019-8
Beyer, C., Chen, C., Gronewold, J., Kolditz, O., & Bauer, S. (2007). Determination of First-Order Degradation Rate Constants from Monitoring Networks. Ground Water, 45(6), 774–785 doi:10.1111/j.1745-6584.2007.00348.x. Verfügbar unter: http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6584.2007.00348.x/abstract
Beyer, C., Konrad, W., Park, C. H., Bauer, S., Grathwohl, P., Rugner, H., & Liedl, R. (2007). Modellbasierte Sickerwasserprognose fur die Verwertung von Recycling-Baustoff in technischen Bauwerken. Grundwasser, 12(2), 94–107 doi:10.1007/s00767-007-0025-x. Verfügbar unter: http://www.springerlink.com/index/pdf/10.1007/s00767-007-0025-x
Bauer, S., Beyer, C., & Kolditz, O. (2006). Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resources Research, 42(1), W01420 doi:10.1029/2004WR003878. Verfügbar unter: http://onlinelibrary.wiley.com/doi/10.1029/2004WR003878/abstract
Beyer, C., Bauer, S., & Kolditz, O. (2006). Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. Journal of Contaminant Hydrology, 87(1–2), 73–95 doi:10.1016/j.jconhyd.2006.04.006. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S016977220600088X
Xie, M., Bauer, S., Kolditz, O., Nowak, T., & Shao, H. (2006). Numerical simulation of reactive processes in an experiment with partially saturated bentonite. Journal of Contaminant Hydrology, 83(1–2), 122–147 doi:10.1016/j.jconhyd.2005.11.003. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0169772205002093
Bauer, S., Liedl, R., & Sauter, M. (2005). Modeling the influence of epikarst evolution on karst aquifer genesis: A time-variant recharge boundary condition for joint karst-epikarst development. Water Resources Research, 41(9), W09416 doi:10.1029/2004WR003321. Verfügbar unter: http://onlinelibrary.wiley.com/doi/10.1029/2004WR003321/abstract
Bauer, S., Bayer-Raich, M., Holder, T., Kolesar, C., Müller, D., & Ptak, T. (2004a). Plume screening and source tracking at the INCORE Linz field site using integral pumping tests. Ingegneria e Geologia degli Acquiferi 19, 19, 27–39
Bauer, S., Bayer-Raich, M., Holder, T., Kolesar, C., Müller, D., & Ptak, T. (2004b). Quantification of groundwater contamination in an urban area using integral pumping tests. Journal of Contaminant Hydrology, 75(3), 183–213 doi:10.1016/j.jconhyd.2004.06.002. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S0169772204001123
Kolditz, O., & Bauer, S. (2004). A process-oriented approach to computing multi-field problems in porous media. Journal of Hydroinformatics, 6, 225–244. Verfügbar unter: http://www.iwaponline.com/jh/006/jh0060225.htm
Ptak, T., Bayer-Raich, M., & Bauer, S. (2004). Tiefenorientierte integrale Erkundung der Schadstoffbelastung in großräumig kontaminierten Aquiferen. Grundwasser, 9(4), 235–247. Verfügbar unter: http://link.springer.com/article/10.1007/s00767-004-0056-5
Zanini, A., Alberti, L., Ceccon, S., Bauer, S., Ptak, T., & Tanda, G. M. (2004). Application of the integral pumping test method in Milan. Ingegneria e Geologia degli Acquiferi, (19), 41–59
Bauer, S., Liedl, R., & Sauter, M. (2003). Modeling of karst aquifer genesis: Influence of exchange flow. Water Resources Research, 39(10), 1285 doi:10.1029/2003WR002218. Verfügbar unter: http://onlinelibrary.wiley.com/doi/10.1029/2003WR002218/abstract
Bauer, S., Liedl, R., & Sauter, M. (2002). Modelling of karst genesis at the catchment scale - influence of spatially variable hydraulic conductivity. Acta Geologica Polonica, 52(1), 13–21. Verfügbar unter: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BGPK-0379-2542
Bauer, S., Fulda, C., & Schäfer, W. (2001). A multi-tracer study in a shallow aquifer using age dating tracers 3H, 85Kr, CFC-113 and SF6 — indication for retarded transport of CFC-113. Journal of Hydrology, 248(1–4), 14–34 doi:10.1016/S0022-1694(01)00381-X. Verfügbar unter: http://www.sciencedirect.com/science/article/pii/S002216940100381X
 

Konferenzbeiträge in Tagungsbänden (begutachtet)

Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2012b). Numerical simulation of bench-scale tank experiments to quantify transverse dispersion. In Models – Repositories of Knowledge (Proceedings ModelCARE2011) (Bd. 355, S. 12–17). ModelCARE 2011, Leipzig, D. Verfügbar unter: http://iahs.info
Benisch, K., & Bauer, S. (2012). Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. In Models – Repositories of Knowledge (Proceedings ModelCARE2011) (Bd. 355, S. 245–251). ModelCARE 2011, Leipzig, D. Verfügbar unter: http://iahs.info
Beyer, C., Ballarini, E., Bauer, R. D., Griebler, C., & Bauer, S. (2012). Interpretation of hydrocarbon plume biodegradation in 2D bench-scale tank experiments by reactive transport modelling. In Models – Repositories of Knowledge (Proceedings ModelCARE2011) (Bd. 355, S. 157–162). ModelCARE 2011, Leipzig, D. Verfügbar unter: http://iahs.info
Graupner, B. J., Li, D., Benisch, K., Mitiku, A. B., Beyer, C., & Bauer, S. (2012). The coupled multiphase flow and reactive transport simulator OGS-Eclipse for CO2 storage simulations. In Models – Repositories of Knowledge (Proceedings ModelCARE2011) (Bd. 355, S. 261–266). ModelCARE 2011, Leipzig, D. Verfügbar unter: http://iahs.info
 

Bücher und Buchkapitel

Kolditz, O., Görke, U.-J., Shao, H., Wang, W., & Bauer, S. (Hrsg.). (2016). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Cham: Springer International Publishing. Verfügbar unter: http://link.springer.com/10.1007/978-3-319-29224-3
Beyer, C., Nagel, T., & Shao, H. (2015). Reactive Transport. In O. Kolditz, H. Shao, W. Wang, & S. Bauer (Hrsg.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (S. 255–275). Springer International Publishing. Verfügbar unter: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_12
Kolditz, O., Shao, H., Wang, W., & Bauer, S. (Hrsg.). (2015). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Cham: Springer International Publishing. Verfügbar unter: http://link.springer.com/10.1007/978-3-319-11894-9
Pfeiffer, W. T., Beyer, C., Graupner, B., & Bauer, S. (2015). Multiphase Flow and Transport with OGS-ECLIPSE. In O. Kolditz, H. Shao, W. Wang, & S. Bauer (Hrsg.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (S. 213–219). Springer International Publishing doi:10.1007/978-3-319-11894-9_9. Verfügbar unter: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_9
Bauer, S., Beyer, C., McDermott, C. I., Kosakowski, G., Krug, S., Park, C.-H., … Taron, J. (2012). Mass transport. In O. Kolditz, U.-J. Görke, H. Shao, & W. Wang (Hrsg.), Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Bd. 86, S. 201–231). Heidelberg, D: Springer. Verfügbar unter: http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-27176-2