Geohydromodellierung

Publikationen

 

Artikel in Fachzeitschriften

Wang, B., & Bauer, S. (2019). Induced geochemical reactions by compressed air energy storage in a porous formation in the North German Basin. Applied Geochemistry, 102: 171–185. doi:10.1016/j.apgeochem.2019.02.003. Available at: http://www.sciencedirect.com/science/article/pii/S0883292719300290

Graupner, B. J., Shao, H., Wang, X. R., Nguyen, T. S., Li, Z., Rutqvist, J., Chen, F., Birkholzer, J., Wang, W., Kolditz, O., Pan, P. Z., Feng, X. T., Lee, C., Maekawa, K., Stothoff, S., Manepally, C., Dasgupta, B., Ofoegbu, G., Fedors, R., Barnichon, J. D., Ballarini, E., Bauer, S., & Garitte, B. (2018). Comparative modelling of the coupled thermal–hydraulic-mechanical (THM) processes in a heated bentonite pellet column with hydration. Environmental Earth Sciences, 77(3): 84. doi:10.1007/s12665-018-7255-3. Available at: https://link.springer.com/article/10.1007/s12665-018-7255-3
Li, D., Beyer, C., & Bauer, S. (2018). A unified phase equilibrium model for hydrogen solubility and solution density. International Journal of Hydrogen Energy, 43(1): 512-529. doi:10.1016/j.ijhydene.2017.07.228. Available at: http://www.sciencedirect.com/science/article/pii/S0360319917331427
Ballarini, E., Graupner, B., & Bauer, S. (2017). Thermal–hydraulic–mechanical behavior of bentonite and sand-bentonite materials as seal for a nuclear waste repository: Numerical simulation of column experiments. Applied Clay Science 135: 289–299. doi:10.1016/j.clay.2016.10.007. Available at: https://www.infona.pl//resource/bwmeta1.element.elsevier-9e096d61-b0b0-34df-8ba9-2a010af7e1b1
Bauer, S., Dahmke, A., & Kolditz, O. (2017). Subsurface energy storage: geological storage of renewable energy—capacities, induced effects and implications. Environmental Earth Sciences, 76(20): 695. doi:10.1007/s12665-017-7007-9. Available at: https://link.springer.com/article/10.1007/s12665-017-7007-9
Kabuth, A., Dahmke, A., Beyer, C., Bilke, L., Dethlefsen, F., Dietrich, P., & Bauer, S. (2017). Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environmental Earth Sciences, 76(1): 23. doi:10.1007/s12665-016-6319-5. Available at: http://link.springer.com/article/10.1007/s12665-016-6319-5
Nordbeck, J., Beyer, C., & Bauer, S. (2017). Experimental and numerical investigation of a scalable modular geothermal heat storage system. Energy Procedia, 125: 604–611. doi:10.1016/j.egypro.2017.08.217. Available at: http://www.sciencedirect.com/science/article/pii/S1876610217337232
Pfeiffer, W. T., Beyer, C., & Bauer, S. (2017). Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience. doi:10.1144/petgeo2016-050. Available at: http://pg.lyellcollection.org/content/early/2017/03/07/petgeo2016-050
Wang, B., & Bauer, S. (2017). Pressure response of large-scale compressed air energy storage in porous formations. Energy Procedia, 125: 588–595. doi:10.1016/j.egypro.2017.08.205. Available at: http://www.sciencedirect.com/science/article/pii/S1876610217337086
Wang, B., & Bauer, S. (2017). Compressed air energy storage in porous formations: a feasibility and deliverability study. Petroleum Geoscience, 23(3): 306-314. doi:10.1144/petgeo2016-049. Available at: http://pg.geoscienceworld.org/content/early/2017/04/11/petgeo2016-049
Beyer, C., Popp, S., & Bauer, S. (2016). Simulation of temperature effects on groundwater flow, contaminant dissolution, transport and biodegradation due to shallow geothermal use. Environmental Earth Sciences, 75(18): 1244. doi:10.1007/s12665-016-5976-8. Available at: http://link.springer.com/article/10.1007/s12665-016-5976-8
Boockmeyer, A., & Bauer, S. (2016). Efficient simulation of multiple borehole heat exchanger storage sites. Environmental Earth Sciences, 75(12): 1–13. doi:10.1007/s12665-016-5773-4. Available at: http://link.springer.com/article/10.1007/s12665-016-5773-4
Delfs, J.-O., Nordbeck, J., & Bauer, S. (2016). Upward brine migration resulting from pressure increases in a layered subsurface system. Environmental Earth Sciences, 75(22): 1441. doi:10.1007/s12665-016-6245-6. Available at: http://link.springer.com/article/10.1007/s12665-016-6245-6
Dethlefsen, F., Beyer, C., Feeser, V., & Köber, R. (2016). Parameterizability of processes in subsurface energy and mass storage. Environmental Earth Sciences, 75(10): 1–25. doi:10.1007/s12665-016-5626-1. Available at: http://link.springer.com/article/10.1007/s12665-016-5626-1
Pfeiffer, W. T., al Hagrey, S. A., Köhn, D., Rabbel, W., & Bauer, S. (2016). Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences, 75(16): 1177. doi:10.1007/s12665-016-5958-x. Available at: http://link.springer.com/article/10.1007/s12665-016-5958-x
Pfeiffer, W. T., Graupner, B., & Bauer, S. (2016). The coupled non-isothermal, multiphase-multicomponent flow and reactive transport simulator OpenGeoSys–ECLIPSE for porous media gas storage. Environmental Earth Sciences, 75(20): 1347. doi:10.1007/s12665-016-6168-2. Available at: http://link.springer.com/article/10.1007/s12665-016-6168-2
Popp, S., Beyer, C., Dahmke, A., Koproch, N., Köber, R., & Bauer, S. (2016). Temperature-dependent dissolution of residual non-aqueous phase liquids: model development and verification. Environmental Earth Sciences, 75(11): 1–13. doi:10.1007/s12665-016-5743-x. Available at: http://link.springer.com/article/10.1007/s12665-016-5743-x
Schulte, D. O., Welsch, B., Boockmeyer, A., Rühaak, W., Bär, K., Bauer, S., & Sass, I. (2016). Modeling insulated borehole heat exchangers. Environmental Earth Sciences, 75(10): 1–12. doi:10.1007/s12665-016-5638-x. Available at: http://link.springer.com/article/10.1007/s12665-016-5638-x
Wang, B., & Bauer, S. (2016). Converting heterogeneous complex geological models to consistent finite element models: methods, development, and application to deep geothermal reservoir operation. Environmental Earth Sciences, 75(20): 1349. doi:10.1007/s12665-016-6138-8.Available at: http://link.springer.com/article/10.1007/s12665-016-6138-8
Bauer, S., Pfeiffer, T., Boockmeyer, A., Dahmke, A., & Beyer, C. (2015). Quantifying Induced Effects of Subsurface Renewable Energy Storage. Energy Procedia, 76: 633–641. doi:10.1016/j.egypro.2015.07.885. Available at: http://www.sciencedirect.com/science/article/pii/S1876610215016616
Pfeiffer, W. T., & Bauer, S. (2015). Subsurface Porous Media Hydrogen Storage – Scenario Development and Simulation. Energy Procedia, 76: 565–572. doi:10.1016/j.egypro.2015.07.872. Available at: http://www.sciencedirect.com/science/article/pii/S1876610215016483
Popp, S., Beyer, C., Dahmke, A., & Bauer, S. (2015). Model Development and Numerical Simulation of a Seasonal Heat Storage in a Contaminated Shallow Aquifer. Energy Procedia, 76: 361–370. doi:10.1016/j.egypro.2015.07.842. Available at: http://www.sciencedirect.com/science/article/pii/S1876610215016185
Popp, S., Beyer, C., Köber, R., Koproch, N., Dahmke, A., & Bauer, S. (2015). Untersuchung der Auswirkungen von unterirdischen, saisonal betriebenen Wärmespeichern auf das Verhalten einer TCE-Grundwasserkontamination durch numerische Szenariensimulatione. bbr Leitungsbau Brunnenbau Geothermie, 3: 54–61. Available at: http://www.bbr-online.de/archiv/03-l-2015/
Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2014). Evaluation of the Role of Heterogeneities on Transverse Mixing in Bench-Scale Tank Experiments by Numerical Modeling. Groundwater, 52(3): 368–377. doi:10.1111/gwat.12066. Available at: http://onlinelibrary.wiley.com/doi/10.1111/gwat.12066/abstract
Ballarini, E., Beyer, C., Bauer, R. D., Griebler, C., & Bauer, S. (2014). Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation, 25(3): 351–371. doi:10.1007/s10532-013-9665-y. Available at: http://link.springer.com/10.1007/s10532-013-9665-y
Benisch, K., Köhn, D., al Hagrey, S. A., Rabbel, W., & Bauer, S. (2014). A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environmental Earth Sciences, 73(7): 3077–3094. doi:10.1007/s12665-014-3603-0. Available at: http://link.springer.com/article/10.1007/s12665-014-3603-0
Boockmeyer, A., & Bauer, S. (2014). High-temperature heat storage in geological media: high-resolution simulation of near-borehole processes. Géotechnique Letters, 4: 151–156. doi:10.1680/geolett.13.00060. Available at: http://www.icevirtuallibrary.com/content/article/10.1680/geolett.13.00060
Li, D., Bauer, S., Benisch, K., Graupner, B., & Beyer, C. (2014). OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany. Acta Geotechnica, 9(1): 67–79. doi:10.1007/s11440-013-0234-7. Available at: http://link.springer.com/article/10.1007/s11440-013-0234-7
Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M., Ivanov, V., & Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 50(2): 1531–1549. doi:10.1002/2013WR013725. Available at: http://doi.wiley.com/10.1002/2013WR013725
Singh, A., Delfs, J. O., Görke, U. J., & Kolditz, O. (2014). Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface. Acta Geotechnica, 9(1): 81–86. doi:10.1007/s11440-013-0237-4. Available at: http://link.springer.com/10.1007/s11440-013-0237-4
Walther, M., Bilke, L., Delfs, J.-O., Graf, T., Grundmann, J., Kolditz, O., & Liedl, R. (2014). Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system: Model verification, application and visualization for transient density-driven seawater intrusion. Environmental Earth Sciences, 1–11. doi:10.1007/s12665-014-3253-2. Available at: http://link.springer.com/10.1007/s12665-014-3253-2
Bauer, S., Beyer, C., Dethlefsen, F., Dietrich, P., Duttmann, R., Ebert, M., & Dahmke, A. (2013). Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 70(8): 3935–3943. doi:10.1007/s12665-013-2883-0. Available at: http://link.springer.com/10.1007/s12665-013-2883-0
Benisch, K., & Bauer, S. (2013). Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. International Journal of Greenhouse Gas Control, 19: 220–233. doi:10.1016/j.ijggc.2013.09.002. Available at: http://www.sciencedirect.com/science/article/pii/S1750583613003344
Benisch, K., Graupner, B., & Bauer, S. (2013). The Coupled OpenGeoSys-eclipse Simulator for Simulation of CO2 Storage – code Comparison for Fluid Flow and Geomechanical Processes. Energy Procedia, 37: 3663–3671. doi:10.1016/j.egypro.2013.06.260. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1876610213005031
Dethlefsen, F., Köber, R., Schäfer, D., al Hagrey, S. A., Hornbruch, G., Ebert, M.,& Dahmke, A. (2013). Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia, 37: 4886–4893. doi:10.1016/j.egypro.2013.06.399. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1876610213006425
Jesußek, A., Dahmke, A., Boockmeyer, A., Bauer, S., Berlin, C., & Ewer, W. (2013). Naturwissenschaftliche Folgen der thermischen Grundwassernutzung — Implikationen für die Genehmigungspraxis. Leitungsbau, Brunnenbau, Geothermie, Geothermie Sonderheft, 54–63. Available at: http://www.bbr-online.de/archiv/geoth-2013/
Li, D., Beyer, C., & Bauer, S. (2013). CO2-brine-mineral Interfacial Reactions Coupled with Fluid Phase Flow. Energy Procedia, 37: 3816–3824. doi:10.1016/j.egypro.2013.06.278. Available at: http://www.sciencedirect.com/science/article/pii/S1876610213005213
Mitiku, A. B., & Bauer, S. (2013). Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environmental Earth Sciences, 70(8): 3661–3673. doi:10.1007/s12665-013-2580-z. Available at: http://link.springer.com/article/10.1007/s12665-013-2580-z
Mitiku, A. B., Li, D., Bauer, S., & Beyer, C. (2013). Geochemical modelling of CO2–water–rock interactions in a potential storage formation of the North German sedimentary basin. Applied Geochemistry, 36: 168–186. doi:10.1016/j.apgeochem.2013.06.008. Available at: http://www.sciencedirect.com/science/article/pii/S088329271300156X
Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2012). Evaluation of transverse dispersion effects in tank experiments by numerical modeling: Parameter estimation, sensitivity analysis and revision of experimental design. Journal of Contaminant Hydrology, 134–135: 22–36. doi:10.1016/j.jconhyd.2012.04.001. Available at: http://www.sciencedirect.com/science/article/pii/S0169772212000526
Bauer, S., Class, H., Ebert, M., Feeser, V., Götze, H., Holzheid, A., & Dahmke, A. (2012). Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environmental Earth Sciences, 67(2): 351–367. doi:10.1007/s12665-012-1707-y. Available at: http://link.springer.com/article/10.1007/s12665-012-1707-y
Beyer, C., Li, D., Lucia, M. D., Kühn, M., & Bauer, S. (2012). Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environmental Earth Sciences, 67(2): 573–588. doi:10.1007/s12665-012-1684-1. Available at: http://link.springer.com/article/10.1007/s12665-012-1684-1
Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U.-J., & Watanabe, N. (2012). A systematic benchmarking approach for geologic CO2 injection and storage. Environmental Earth Sciences, 67(2), 613–632 doi:10.1007/s12665-012-1656-5. Available at: http://link.springer.com/article/10.1007/s12665-012-1656-5
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., & Zehner, B. (2012). OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2): 589–599. doi:10.1007/s12665-012-1546-x. Available at: http://link.springer.com/article/10.1007/s12665-012-1546-x
Lucia, M. D., Bauer, S., Beyer, C., Kühn, M., Nowak, T., Pudlo, D., & Stadler, S. (2012). Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environmental Earth Sciences, 67(2): 563–572. doi:10.1007/s12665-012-1725-9. Available at: http://link.springer.com/article/10.1007/s12665-012-1725-9
Li, D., Graupner, B. J., & Bauer, S. (2011). A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia, 4: 3817–3824. doi:10.1016/j.egypro.2011.02.317. Available at: http://www.sciencedirect.com/science/article/pii/S1876610211005960
Bauer, R. D., Rolle, M., Bauer, S., Eberhardt, C., Grathwohl, P., Kolditz, O., & Griebler, C. (2009). Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. Journal of Contaminant Hydrology, 105(1–2): 56–68. doi:10.1016/j.jconhyd.2008.11.004. Available at: http://www.sciencedirect.com/science/article/pii/S0169772208001976
Beyer, C., Altfelder, S., Duijnisveld, W. H. M., & Streck, T. (2009). Modelling spatial variability and uncertainty of cadmium leaching to groundwater in an urban region. Journal of Hydrology, 369(3–4): 274–283. doi:10.1016/j.jhydrol.2009.02.022. Available at: http://www.sciencedirect.com/science/article/pii/S0022169409001012
Beyer, C., Konrad, W., Rügner, H., Bauer, S., Liedl, R., & Grathwohl, P. (2009). Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Management, 29(2): 839–850. doi:10.1016/j.wasman.2008.06.025. Available at: http://www.sciencedirect.com/science/article/pii/S0956053X08002067
Blum, P., Hunkeler, D., Weede, M., Beyer, C., Grathwohl, P., & Morasch, B. (2009). Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis–Menten kinetics and stable carbon isotopes. Journal of Contaminant Hydrology, 105(3–4): 118–130. doi:10.1016/j.jconhyd.2008.11.009. Available at: http://www.sciencedirect.com/science/article/pii/S0169772208002131
Rein, A., Bauer, S., Dietrich, P., & Beyer, C. (2009). Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. Journal of Contaminant Hydrology, 108(3–4): 118–133. doi:10.1016/j.jconhyd.2009.06.005. Available at: http://www.sciencedirect.com/science/article/pii/S0169772209000898
Park, C.-H., Beyer, C., Bauer, S., & Kolditz, O. (2008). A study of preferential flow in heterogeneous media using random walk particle tracking. Geosciences Journal, 12(3): 285–297. doi:10.1007/s12303-008-0029-2. Available at: http://link.springer.com/article/10.1007/s12303-008-0029-2
Park, C.-H., Beyer, C., Bauer, S., & Kolditz, O. (2008). Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environmental Geology, 55(8): 1755–1766. doi:10.1007/s00254-007-1126-7. Available at: http://link.springer.com/article/10.1007/s00254-007-1126-7

 

Konferenzbeiträge in Tagungsbänden (begutachtet)

Ballarini, E., Bauer, S., Eberhardt, C., & Beyer, C. (2012). Numerical simulation of bench-scale tank experiments to quantify transverse dispersion (pp. 12–17). In Models – Repositories of Knowledge (Proceedings ModelCARE2011), Leipzig, Germany. Available at: http://iahs.info
Benisch, K., & Bauer, S. (2012). Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model (pp. 245–251). In Models – Repositories of Knowledge (Proceedings ModelCARE2011), Leipzig, Germany. Available at: http://iahs.info
Beyer, C., Ballarini, E., Bauer, R. D., Griebler, C., & Bauer, S. (2012). Interpretation of hydrocarbon plume biodegradation in 2D bench-scale tank experiments by reactive transport modelling pp. 157–162). In Models – Repositories of Knowledge (Proceedings ModelCARE2011), Leipzig, Germany. Available at: http://iahs.info
Graupner, B. J., Li, D., Benisch, K., Mitiku, A. B., Beyer, C., & Bauer, S. (2012). The coupled multiphase flow and reactive transport simulator OGS-Eclipse for CO2 storage simulations (pp. 261–266). In Models – Repositories of Knowledge (Proceedings ModelCARE2011), Leipzig, Germany,. Available at: http://iahs.info
Ballarini, E., Bauer, S., Rolle, M., C., & Beyer, C. (2011). Design and evaluation of bench-scale tank experiments for the quantification of transverse dispersion using numerical simulations (pp. 255–258). In Proceedings 7th International Groundwater Quality Conference, Zürich, Switzerland. Available at: http://iahs.info
Beyer, C., Schäfer, C., Park, C.-H., Kolditz, O., & Bauer, S. (2011). Evaluation of multi-component NAPL source zone screening models by numerical simulation (pp.. 140–143). In Proceedings 7th International Groundwater Quality Conference, Zürich, Switzerland. Available at: http://iahs.info
Grandel, S., Schäfer, D., Dahmke, A., & Beyer, C. (2011). Design and evaluation of bench-scale tank experiments for the quantification of transverse dispersion using numerical simulations (pp. 271–274).. In Proceedings 7th International Groundwater Quality Conference, Zürich, Switzerland. Available at: http://iahs.info
Beyer, C., Khan, F., Rein, A., Dietrich, P., Kolditz, O., & Bauer, S. (2008). Evaluation of multi-component NAPL source zone screening models by numerical simulation (pp. 210–217). In Proceedings 6th International Groundwater Quality Conference, Fremantle, Western Australia. Available at: http://iahs.info
Bauer, S., Beyer, C., & Kolditz, O. (2005). Assessing measurements of first-order degradation rates through the virtual aquifer approach (pp. 274–281). In Proceedings 4th International Groundwater Quality Conference, Waterloo, Canada. Available at: http://iahs.info

 

Bücher und Buchkapitel

Pfeiffer, W. T. & Bauer, S. (2018). Hydraulic effects during large-scale hydrogen storage in porous formations. In Ferrari, A., & Laloui, L. (Eds.), Energy Geotechnics: Thermo-Hydro-Chemo-Mechanical Behaviour of Geomaterials (pp. 276–283). Springer Series in Geomechanics and Geoengineering. Available at: https://link.springer.com/chapter/10.1007/978-3-319-99670-7_35
 
Kolditz, O., Görke, U.-J., Shao, H., Wang, W., & Bauer, S.  (2016). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Springer International Publishing. Available at: http://link.springer.com/10.1007/978-3-319-29224-3
Beyer, C., Nagel, T., & Shao, H. (2015). Reactive Transport. In O. Kolditz, H. Shao, W. Wang, & S. Bauer(Eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (pp. 255–275). Springer International Publishing. Available at: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_12
Kolditz, O., Shao, H., Wang, W., & Bauer, S. (2015). Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Springer International Publishing. Available at: http://link.springer.com/10.1007/978-3-319-11894-9
Magri, F., Maßmann, J., Wang, W., & Benisch, K. (2015). Coupled THM Processes. In O. Kolditz, H. Shao, W. Wang, & S. Bauer (Eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (pp. 221–245). Springer International Publishing doi:10.1007/978-3-319-11894-9_10. Available at: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_10
Pfeiffer, W. T., Beyer, C., Graupner, B., & Bauer, S. (2015). Multiphase Flow and Transport with OGS-ECLIPSE. In O. Kolditz, H. Shao, W. Wang, & S. Bauer (Eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (pp. 213–219). Springer International Publishing doi:10.1007/978-3-319-11894-9_9. Available at: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_9
Walther, M., Stoeckl, L., Delfs, J.-O., & Graf, T. (2015). Density-Dependent Flow. In O. Kolditz, H. Shao, W. Wang, & S. Bauer (Eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking (pp. 205–212). Springer International Publishing doi:10.1007/978-3-319-11894-9_8. Available at: http://link.springer.com/chapter/10.1007/978-3-319-11894-9_8
Bauer, S., Beyer, C., McDermott, C. I., Kosakowski, G., Krug, S., Park, C.-H., & Taron, J. (2012). Mass transport. In O. Kolditz, U.-J. Görke, H. Shao, & W. Wang (Eds.), Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (pp. 201–231).  Springer International Publishing. Available at: http://www.springer.com/computer/theoretical+computer+science/book/978-3-642-27176-2
Maier, U., Beyer, C., Susset, B., & Grathwohl, P. (2008). Modelling of solute mass transfer across the capillary fringe. In L. Candela, I. Vadillo, & F. J. Elorza (Eds.), Advances in Subsurface Pollution of Porous Media: Indicators, Processes and Modelling (pp. 15–30). CRC Press. Available at: http://www.crcpress.com/product/isbn/9780415476904